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Abstract: This paper evaluates the efficacy of a machine learning approach to data 

fusion using convolved multi-output Gaussian processes in the context of 

geological resource modeling. It empirically demonstrates that information 

integration across multiple information sources leads to superior estimates of all the 

quantities being modeled, compared to modeling them individually. Convolved 

multi-output Gaussian processes provide a powerful approach for simultaneous 

modeling of multiple quantities of interest while taking correlations between these 

quantities into consideration. Experiments are performed on large scale data taken 

from a mining context. 
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1. Introduction 

Gaussian processes (GPs) [Rasmussen and Williams, 2006] are powerful non-parametric 

Bayesian learning techniques that can handle correlated, uncertain and incomplete data. GPs 

yield a continuous domain representation of the data and hence can be sampled at any desired 

resolution (multi-scale model). They model and use the spatial correlation of the given data to 

estimate the values for unknown points of interest. GPs perform Kriging [Matheron, 1963, 

Cressie, 1993] interpolation. As a case in point, the work [Vasudevan, Ramos, Nettleton, and 

Durrant-Whyte, 2009] modeled large scale terrain using GPs. It proposed the use of the non-

stationary neural network kernel to model large scale discontinuous spatial data and empirically 

demonstrated that this kernel was superior (in modeling) to the stationary squared exponential 

kernel and at least as good as most standard interpolation techniques for a range of terrain (in 

terms of sparsity/complexity/discontinuities). Data fusion in the context of Gaussian processes is 

necessitated by the presence of multiple, multi-sensor, multi-attribute, incomplete and/or 

uncertain data sets of the entity being modeled. This paper presents an empirical evaluation of a 

machine learning approach to performing data fusion with Gaussian processes (based on 

convolved GPs) in the context of vector valued data. The objectives are to understand (1) if 

simultaneous modeling of multiple quantities of interest using GPs (i.e. modeling and using the 

correlations between them and  

hence performing data fusion) is better than modeling these quantities independently and (2) 

if nonstationary kernels are more effective than stationary kernels for modeling geological data. 

Experiments are performed on large scale data obtained from a mining context. 
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2. Related Work 

This section first reviews recent works in the machine learning and related communities that 

addressed the problem of data fusion with Gaussian processes (GPs) and then positions the 

proposed approach within the wider geostatistics literature on which many of the techniques 

being presented are based. 

Preliminary attempts at data fusion with GPs were shown in [El-Beltagy and Wright, 2001] 

and [Murray-Smith and Pearlmutter, 2005]. The former demonstrated how a GP could be used 

to model an expensive process by first modeling a GP on an approximate or cheap process and 

subsequently using the many input-output data from the approximate process together with the 

few samples available of the expensive process in order to learn a GP for the latter. The work 

[Murray-Smith and Pearlmutter, 2005] attempted to generalize arbitrary transformations on GP 

priors through linear transformations. It hinted at how this framework could be used to introduce 

heteroscedasticity (random variables with nonconstant variance) and how information from 

different sources could be combined. However, specifics on how the fusion could actually be 

performed were beyond the scope of the work. Girolami in [Girolami, 2006] integrated 

heterogeneous feature types within a Gaussian process classification setting, in a protein fold 

recognition application domain. Each feature representation was represented by a separate GP. 

Fusion used the idea that individual feature representations were considered independent and 

hence a composite covariance function could be defined in terms of a linear sum of Gaussian 

process priors. Reece et al. in [Reece, Roberts, Nicholson, and Lloyd, 2011] integrated “hard” 

data obtained from sensors with “soft” information obtained from human sources within a 

Gaussian process classification framework. It used heterogeneous information-types as mutually 

independent sources of information that were transformed into the kernel representation (a kernel 

for each kind of information) and combined using a product rule. While [Girolami, 2006] and 

[Reece, Roberts, Nicholson, and Lloyd, 2011] demonstrated how multiple information-types may 

be combined using kernel methods, the approach presented in this paper addresses the problem 

of improving the predictions of several different (heterogeneous) quantities being simultaneously 

modeled by explicitly modeling correlations between them. 

Recent approaches demonstrating data fusion with Gaussian processes in the context of large 

scale terrain modeling were based on heteroscedastic GPs [Vasudevan, Ramos, Nettleton, and 

Durrant-Whyte, 2010a] and dependent GPs [Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 

2010b, 2011]. These addressed the problem of fusing multiple, multi-sensor data sets of a single 

quantity of interest. This paper describes the framework for extending this concept to multiple 

heterogeneous quantities of interest. The work [Vasudevan, Ramos, Nettleton, and Durrant-

Whyte, 2010a] treated the data-fusion problem as one of combining different noisy samples of a 

common entity (terrain) being modeled. The GP representing the fused output was assumed to 

have non-constant noise variance; the noise variance at any point was dependent on the input 

data from the different data sets. In the Machine Learning community, this idea is referred to as 

heteroscedastic GPs [Goldberg, Williams, and Bishop, 1998, Kersting, Plagemann, Pfaff, and 
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Burgard, 2007]. Vasudevan et al in [Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2010b, 

2011] treated the data fusion problem as one of improving GP regression through modeling the 

spatial correlations (auto and cross covariances) between several dependent GPs representing the 

respective data sets. This idea was inspired by recent machine learning contributions in multi-

task or multi-output or dependent GP modeling including [Bonilla, Chai, and Williams, 2007] 

and [Boyle and Frean, 2004], the latter being based on [Higdon, 2002]. In Kriging terminology, 

this idea is akin to Co-kriging [Wackernagel, 2003, Goovaerts, 1997]. The work [Vasudevan, 

2012] performed a model complexity analysis of multiple approaches to data fusion using GPs, 

applied in the context of large scale terrain modeling. Melkumyan et al, in [Melkumyan and 

Ramos, 2011], compared various combinations of stationary kernel including the squared 

exponential (SQEXP), Matern 3/2 and a sparse covariance function [Melkumyan and Ramos, 

2009] in the context of geological resource modeling. This paper evaluates a machine learning 

approach to data fusion using a convolved GP model applied to a multioutput (vector valued 

output) problem of geological resource modeling; multiple kernel combinations including the 

best results from past works mentioned above are compared. 

The paper [A  ́lvarez, Rosasco, and Lawrence, 2012] presents an extensive review of kernels 

for vector valued functions. Drawing parallels between regularization and Bayesian perspectives, 

the linear model of corregionalization (LMC) [Wackernagel, 2003, Goovaerts, 1997] is presented 

as a generalized model on which the geostatistical approaches to multivariate modeling and 

subsequently machine learning / Gaussian process modeling of multivariate data are based. The 

LMC incorporates a nested framework wherein outputs are first expressed as a linear combination 

of spatially uncorrelated processes, each of these processes is a linear sum of uncorrelated 

functions. Within this framework, kernels are broadly classified as being separable (a Sum of 

Separable kernels) or non-separable (e.g. divergence-free and curl-free kernels). Separable 

kernels expresses the covariance between outputs as a product of two terms one that captures the 

covariance between outputs, not considering the inputs and the other that captures the covariance 

between inputs, not considering the outputs. Such separation is not obtained in a nonseparable 

kernel formulation. Among approaches to developing nonseparable kernels, the process 

convolution (PC) approach provides a different and flexible way of modeling vector valued 

(multi-output or multi-task) functions. In the PC approach, each component of a vector output is 

modeled as a base process (e.g. a GP) convolved with a smoothing kernel and treated with a noise 

process (e.g. a GP). This transformation of base processes (or latent functions) contrasts with the 

LMC formulation. The PC approach captures the trend and complexity of the data through the 

parameters of the smoothing kernel (and additional parameters as required); the LMC relies on a 

repertoire of latent functions, a linear sum of which will adequately describe the data. Under 

assumption of Dirac delta smoothing kernels for each output, the covariance between outputs as 

obtained by the PC approach reduces to that of the LMC approach [A  ́ lvarez, Rosasco, and 

Lawrence, 2012]. This paper adopts the process convolution approach to modeling vector valued 

data. The proposed approach augments the PC based covariance between input data with a 

symmetric matrix of free parameters that is intended to capture the signal variance and similarities 

between outputs being modeled. 



 

344  Efficacy of data fusion using convolved multi-output Gaussian process 

 

This paper reports a detailed multi-metric performance comparison experiment in a 

geological resource characterization context, performed between a convolved multi-output GP, 

an equivalent set of GPs (derived from the multi-output GP parameters) and a set of 

independently optimized GPs, to provide for an exact and an independent comparison between 

them. The objective is to quantify the benefit (if any) of simultaneous modeling of the multiple 

quantities by modeling and using the correlations between them as against modeling each of these 

quantities separately. This paper also compares data fusion using multiple stationary kernels and 

a nonstationary kernel in the context of modeling geological data. Further discussion on the 

broader issues relating to the application of the approach in practical problems and the tying 

together of different prior works that have studied this approach [Vasudevan, Ramos, Nettleton, 

and Durrant-Whyte, 2010b, 2011, Melkumyan and Ramos, 2011] is presented in the technical 

report version of this paper [Vasudevan, Melkumyan, and Scheding, 2012].  

 

3. Approach 

3.1 Gaussian processes for scalar and vector valued functions 

Gaussian processes [Rasmussen and Williams, 2006] (GPs) are stochastic processes wherein 

any finite subset of random variables is jointly Gaussian distributed. They may be thought of as 

a Gaussian probability distribution in function space. They are characterized by a mean function 

m(x) and the covariance function k(x, x’) that together specify a distribution over functions. In 

the context of geological resource modeling, each x ≡ (east, north, depth) (3D coordinates) and f 

(x) ≡ z, the concentration of the quantity being modeled. Although not necessary, the mean 

function m(x) may be assumed to be zero by scaling/shifting the data appropriately such that it 

has an empirical mean of zero. 

The covariance function or kernel models the relationship between the random variables 

corresponding to the given data. It can take numerous forms [Rasmussen and Williams, 2006, 

chap. 4]. The stationary squared exponential (or Gaussian) kernel (SQEXP) is given by  

                    (1) 

where k is the covariance function or kernel; Σ = diag[least, lnorth, ldepth ]−2 is a d x d diagonal 

length-scale matrix (d = dimensionality of input = 3 in this case), a measure of how quickly the 

modeled function changes in the east, north and depth directions; σ2 is the signal variance. The 

set of parameters {least, lnorth, ldepth, σf } are referred to as the kernel hyper parameters. 

The non-stationary neural network (NN) kernel [Neal, 1996, Williams, 1998a,b] takes the 

form 

              (2) 
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where �̃� and �̃�’ are augmented input vectors (each point is augmented with a 1), Σ is a (d + 1) x 

(d + 1) diagonal length-scale matrix given by Σ = diag[least, lnorth, ldepth ]−2 , β being a bias factor 

and d being the dimensionality of the input data. The variables {β, least, lnorth, ldepth, σf } constitute 

the kernel hyper parameters. The NN kernel represents the covariance function of a neural 

network with a single hidden layer between the input and output, infinitely many hidden nodes 

and using a Sigmoidal transfer function [Williams, 1998a] for the hidden nodes. Hornik, in 

[Hornik, 1993], showed that such neural networks are universal approximators and Neal, in [Neal, 

1996], observed that the functions produced by such a network would tend to a Gaussian process. 

Prior work in [Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2009] found the NN kernel to 

be more effective than the SQEXP kernel at modeling discontinuous data. 

The Matern 3/2 kernel is another stationary kernel differing from the SQEXP kernel in that 

the latter is infinitely differentiable and consequently tends to have a strong smoothing nature, 

which is argued as being detrimental to modeling physical processes [Rasmussen and Williams, 

2006]. It takes the form specified in Equation 3.  

                      (3) 

where k ∈ 1, … , d is the dimension of the input data (d = dimensionality of input = 3 in this 

case),Σ = [least, lnorth, ldepth] is a 1 x d length-scale matrix and σ2 is the signal variance. The set of 

parameters {least, lnorth, ldepth, σf } is referred to as the kernel hyperparameters. 

Regression using GPs uses the fact that any finite set of training (evaluation) data and test 

data of a GP are jointly Gaussian distributed. Assuming noise free data, this idea is shown in 

Expression 4 (hereafter referred to as Equation 4). This leads to the standard GP regression 

equations yielding an estimate (the mean value, given by Equation 5) and its uncertainty 

(Equation 6). 

                     (4) 

 

                                     (5) 

               (6) 

For n training points (X, z) = (xi , zi )i=1...n and n∗ test points (X∗, f∗), K (X, X∗) denotes the n × 

n∗ matrix of covariances evaluated at all pairs of training and test points. The terms K (X, X), K 

(X∗, X∗) and K (X∗, X) are defined likewise. In the event that the data being modeled is noisy, a 

noise hyper parameter (σ) is also learnt with the other GP hyper parameters and the covariance 

matrix of the training data K(X,X) is replaced by [K(X, X) + σ2I ] in Equations 4, 5 and 6. GP 

hyper parameters may be learnt using various techniques such as cross validation [Rasmussen 

and Williams, 2006], maximuma-posteriori estimation using Markov Chain Monte Carlo 
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techniques [Rasmussen and Williams, 2006, Williams, 1998b] and maximizing the marginal 

likelihood of the observed training data [Rasmussen and Williams, 2006, Vasudevan, Ramos, 

Nettleton, and Durrant-Whyte, 2009]. This paper adopts the latter most approach based on the 

intuition that it may be more suited for large data sets. The marginal likelihood to be maximized 

is described in Equation 7. 

            (7) 

In the geological resource modeling problem considered in this paper, the objective is to 

model concentrations of multiple elements across the field of interest. The data fusion aspect of 

this problem is the improved prediction of each one of these concentrations by integration or use 

of all other concentrations available. If the concentration of each element is modeled using a 

separate GP, the objective is to improve one GPs prediction estimates given all other GP models. 

Simultaneous modeling (and consequently data fusion) of multiple concentrations can be 

achieved by the use of multi-output (MOGP) or dependent GPs [Vasudevan, 2012], also known 

as multi-task GP if the input points for each element are different. One way of developing such 

models (specifically, kernels for vector valued functions) is through the process convolution 

approach. GP regression for vector valued output is presented in the following paragraphs; the 

next subsection discusses the process convolution approach and specifies the kernel functions 

used. 

Let the number of outputs (element concentrations) that need to be simultaneously modeled 

be denoted by nt. Equations 4, 5 and 6 represent respectively the MOGP data fusion model, the 

regression estimates and their uncertainties, subject to the following modifications to the basic 

notation. The set z = [z1 , z2 , z3 , ... , znt ]’represents the output values of the selected training 

data (element concentrations) from the individual nt outputs (elements) that need to be 

simultaneously modeled. The term X = [ X1 , X2 , X3 , ... , Xnt ] denotes the input location values 

(east, north, depth) of the selected training data for each of the outputs. Any kernel [Rasmussen 

and Williams, 2006] may be used and even different kernel could be used for different data sets 

using the technique demonstrated in [Melkumyan and Ramos, 2011] (for stationary kernel) or 

the convolution process technique demonstrated in [Higdon, 2002, Boyle and Frean, 2004, 

Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2010b, 2011] and in this paper (for both 

stationary and nonstationary kernel). The covariance matrix of the training data  

is given by 

 
where K𝑖𝑖

𝑌  = K𝑖𝑖
𝑈 (𝑋𝑖 , 𝑋𝑖) + σ𝑖

2𝐼 and K𝑖𝑖
𝑌  = K𝑖𝑗

𝑈  (𝑋𝑖 , 𝑋𝑖𝑗) represent the auto-covariance of the ith 

data set with itself and the cross covariance between the ith and jth data sets respectively, These 

terms model the covariance between the noisy observed data points (z values). Thus, they also 
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take the noise components of the individual data sets / GPs into consideration. The corresponding 

noise free terms are respectively given by K𝑖𝑖
𝑈 and K𝑖𝑗

𝑈 . These are derived by using the process 

convolution approach to formulating Gaussian processes; details of this follow in the next 

subsection. The covariance matrix between the test points and training points is given by  

, 

where i ϵ {1, … , nt } is the GP that is being evaluated given all other GPS. The Matrix 

K(X,X*) is defined likewise. Finally, the covariance of the test point is given by 

, 

assuming the ith GP needs to be evaluated for the particular test point. The mean and variance 

of the concentration estimate can thus be obtained by applying Equation 5 and 6, after 

incorporating multiple outputs, multiple GP/ noise hyperparameters and deriving appropriate 

auto and cross covariances functions that model the spatial correlation between the individual 

data sets. Data fusion is thus achieved in the MOGP approach by correlating individual outputs 

and using this correlation information to improve the prediction estimates of each of them. 

 

3.2 Convolved GPs, auto and cross covariance functions for vector valued functions 

The process convolution approach to modeling GPs, proposed in [Higdon, 2002] models a 

GP as the convolution of a smoothing kernel and a Gaussian white noise process. Thus, the trend 

and complexity of the data is captured by the parameters of the smoothing kernel. In the case of 

vector valued outputs, each output (element concentration) can be assumed to be modeled by a 

separate convolved GP; the covariance function between two outputs can be derived as a function 

of the respective smoothing kernel. The work [Higdon, 2002] expressed a relationship between 

the smoothing kernel and the corresponding covariance function through the Fourier transform 

and noted that for stationary isotropic kernels, there existed a one-to-one relationship between 

the covariance function and its smoothing kernel and that for non-isotropic and/or non-stationary 

kernels, there was no unique solution to the smoothing kernel. The paper suggested that the 

smoothing kernel for a covariance function could be obtained as the Inverse Fourier Transform 

of the square root of the spectrum (Fourier transform) of the covariance function. The process 

convolution approach to multi-output GPs has been used with the stationary SQEXP kernel in 

[Boyle and Frean, 2004, A  ́ lvarez and Lawrence, 2009, Vasudevan, Ramos, Nettleton, and 

Durrant-Whyte, 2010b, Melkumyan and Ramos, 2011] and the nonstationary NN kernel in 

[Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2011, Vasudevan, 2012]. Given the 

smoothing kernel of the covariance functions in consideration, the cross-covariance terms can be 

derived as a kernel correlation between the respective smoothing kernels as demonstrated in 

[Higdon, 2002, Boyle and Frean, 2004, Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2011, 

Vasudevan, 2012, Melkumyan and Ramos, 2011]. A more detailed discussion of the approach 
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can be obtained from the technical report version of this paper [Vasudevan, Melkumyan, and 

Scheding, 2012] and the aforementioned references. 

Assume two GPs N (0, ki ) and N(0,kj), with with length scale matrices Σi and Σj. Based on 

[Boyle and Frean, 2004], the cross and auto covariances for the stationary SQEXP kernel are 

given by Equations 8 and 9 respectively. The corresponding expressions for the nonstationary 

NN kernel are derived in [Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2011, Vasudevan, 

2012] and given in Equations 10 and 11 respectively. For the Matern 3/2 kernel, the expressions 

for the cross covariance and auto covariance are derived in [Melkumyan and Ramos, 2011] and 

given in Equations 12 and 13 respectively. Based on [Melkumyan and Ramos, 2011], the cross 

covariance function between a SQEXP and Mater 3/2 kernel is given by Equation 14.  

         (8) 

where 

                         

         (9) 

                (10) 

where 

                                                          

                                           (11) 

      (12) 

where k ∈ 1, … , d is the dimension of the input data, li and lj are the length scales for the two 

Matern 3/2 kernel based GPs i and j, lik and ljk are the kth length scales (corresponding to the kth 

dimensions) of these GPs and r𝑘  =  |xk – xk
′  | is the distance in the kth dimension between the 

input data.  

                (13) 
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       (14) 

Where λk = 
√3

2

lSEk

lMk
, erf(x) =

1

2
∫ 𝑒−𝑡2𝑥

0
𝑑𝑡, 𝑘 ∈ 1, … , 𝑑 is the dimension of the input data, lSE 

and lM are the respective length scales for the SQEXP and Matern 3/2 kernel based GPs i and j, 

lSEk and lMk are the kth length scales (corresponding to the kth dimensions) of these GPs and r𝑘  =

 |xk – xk
′  | is the distance in the kth dimension between the input data 

In Equations 10 and 11, the term, kNN (x, x’,Σij), is the NN kernel for two data x, x’ and 

length scale matrix Σij . It is given by Equation 2, excluding the signal variance term (σ𝑓
2). 

Likewise, in Equation 13, kMATERN (x, x’, Σi ) refers to the Matern 3/2 kernel for two data x, x’ 

and length scale matrix Σij , given by Equation 3 (excluding the σ2 term). The Kf terms in 

Equations 8, 9, 10 and 11 are inspired by [Bonilla, Chai, and Williams, 2007]. This term models 

the similarity between individual outputs and also incorporates the signal variance. It is a 

symmetric matrix of size nt x nt and is learnt along with the other GP hyperparameters. Thus, the 

hyperparameters of the system that need to be learnt include (nt.(nt + 1))/2 output similarity 

values, nt . 2 or nt . 3 length scale values respectively for the individual SQEXP/MATERN3 or 

NN kernels and nt noise values corresponding to the noise in the observed data sets. Learning 

these hyper parameters by adapting the GP learning procedure described before (Equation 7) for 

multiple outputs [Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2010b, 2011].  

 

 

4. Experiments 

4.1 Data set 

 
Figure 1: The geological resource data set. Figures 1(a), 1(b) and 1(c) respectively show the 

concentrations of three elements over the region of interest. The central region of points is surrounded by 

sparse sets of points which are not pre-filtered when applying the proposed algorithm. 

 

Experiments were conducted on a large scale geological resource data set made up of real 

sensor data obtained from a mine site. The data consists of 63,667 measurements from a 3478.4 

m x 1764.6 m x 345.9 m region in Australia that has undergone drilling and chemical assays to 
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determine its composition. The holes are generally 25-100m apart and tens to hundreds of meters 

deep. Within each hole, data is collected at an interval of 2m. The measurements include the (east, 

north, depth) position data along with the concentrations of three elements, Element-1, Element-

2 and Element-3, hereafter denoted as E1, E2 and E3 respectively. The names of these elements 

have been withheld at the request of the sponsor of this work. These three elements are known to 

be correlated and hence the objective is to use each of their GP models to improve the others’ 

prediction estimates by capturing the correlation between these quantities. The data set is shown 

in Figure 1. 

 

4.2 Testing procedure 

The objective of the experiment was to compare the convolved multi-output GP approach 

with a conventional GP approach and quantify if the data fusion in the MOGP actually improves 

estimation. A second objective of the experiments was to compare the nonstationary NN kernel 

with the stationary SQEXP kernel, the Matern 3/2 kernel and a combination of them (Matern 3/2 

Matern 3/2 SQEXP) that proved effective in prior testing [Melkumyan and Ramos, 2011]. 

Towards these aims, a ten fold cross validation experiment was performed on the data set, with 

each of the kernels. This was motivated by the work [Kohavi, 1995], which suggests a ten fold 

stratified (similar number of samples in each fold) cross validation as the best way of testing the 

estimation accuracy of machine learning methods on real world data sets. 

The MOGP and simple GP approaches each require an optimization step for model learning. 

The optimization step in each method can result in different local minima in each trial (and with 

each kernel). Thus, to do a one-on-one comparison between the two approaches and quantify 

their relative performances, an exact comparison is required. The performance comparison 

experiment presented in this paper provides an exact comparison between the MOGP and GP 

approaches. To do this, 

 

• The best available MOGP parameters were found for each kernel. From this, appropriate 

subsets of the parameters were chosen for the GP approach. The idea of the exact comparison 

is to use separate GPs with parameters derived from the MOGP parameters and test the effect 

of discarding the other correlated data sources. 

• The approaches were compared on identical test points and identical training/evaluation 

points selected for each of the test points. 

• It is also necessary that the covariance function for the simple GP approach must be 

identical to the auto-covariance function of the DGP approach. For this reason, the auto-

covariance function (for both kernels) is used as the covariance function for the GP approach 

to data fusion. 

 

In addition to this, three independently optimized GPs (denoted as GPI here after) were 

optimized for E1, E2 and E3 and their estimates for the same set of test points were also compared. 

Thus the effect of information integration in the context of the geological resource modeling can 
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be seen in terms of both an exact comparison (MOGP vs GP) and an independent comparison 

(MOGP vs GPI). 

For the ten fold cross validation, a “block” sampling technique (see Figure 2) was used, a 3D 

version of the “patch” sampling method used in [Vasudevan, Ramos, Nettleton, and Durrant-

Whyte, 2009]. The idea was that rather than selecting test points uniformly, blocks of data test 

the robustness of the approach better as the support points to the query point are situated farther 

away (outside the block) than in uniform point selection. The GP models are used to predict 

(interpolate) the concentrations at all points within a test block; the larger the block size, the 

farther the support data to make predictions for points within the block. The data set is gridded 

into blocks of different sizes. Collections of blocks represent individual folds. In each cross 

validation test, one fold was designated as a test fold and points from it were used exclusively for 

testing. All other folds together constituted the evaluation data, a small subset of which were 

labeled as the training data. Note that this technique of testing will naturally lead to larger errors. 

For the test fold, the E1, E2 and E3 concentrations (and error metrics defined in the following 

section) are estimated first using the MOGP approach, then with the GP approach for each of the 

three elements using parameters derived from the MOGP parameters and finally, with an 

independently optimized GP for each of the three quantities. 

 
Figure 2: Example of 3D block sampling of a geological resource data set. Blocks may be sampled 

of different sizes. The red and yellow block represent block from two of the ten folds used in cross 

validation testing. Test points within these blocks have “support” data away from them, outside the 

blocks. This sampling method is therefore a stronger test of the robustness of an approach to estimating 

the quantity of interest, as compared to uniformly sampling test points. The estimation errors however, 

will be higher than that obtained for a uniformly sampled set of points. 

 

Table1: Block size tested and implications on results 10 fold cross validation with block sampling, 

63667 points spread over 3478.4 m x 1764.6 m x 345.9 m 
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Block sizes were chosen empirically, in proportion (arbitrarily rounded up or down) to the 

dimensions of the whole data set and with a view of performing a stratified cross validation test. 

The block sizes chosen and the resulting implications on the cross validation testing are shown 

in Table 1. The smaller block size of 22m x 11m x 2m results in each fold having a similar number 

of points (i.e. numbers of points in folds with min/max test points are similar) and thus results in 

the most stratified cross validation test. With increasing block size, prediction error increases 

(support data is farther away), stratification is reduced and hence, variance in prediction error 

also increases. Uniform sampling of test  

points may be considered as a limiting case of block sampling with the smallest block size 

possible 

 

4.3 Metrics 

Multiple metrics have been used to understand the various methods being tested. They are 

briefly described below. These are evaluated for each test point in each fold of the cross validation 

test. The result would then be represented by the mean and standard deviations of all values across 

all folds. 

1. Squared Error (SE): This represents the squared difference between the predicted 

concentration and the known concentrations for the set of test points. The mean over the 

set of all test points (Mean Squared Error or MSE) is the most popular metric for the 

context of this paper. Referring Equations 5 and 6, for the ith test point, 

 
 

2. Variance (VAR): This represents the variance (uncertainty) in the predicted 

concentrations for the set of test points. a lower VAR is a good outcome, only if the SE 

is also low. A model that has high SE and low VAR would be a poor model as this result 

would suggest that the model is confident of its inaccurate estimates. A better outcome 

would be a model with high SE and correspondingly high VAR i.e. a model that has 

inaccurate predictions but is also uncertain about these predictions. 

 

3. Negative log probability / Log loss (NLP): Inspired by [Rasmussen and Williams, 2006, 

page 23], this is a measure of the extent to which the model (including the GP model, 

kernel, parameters and evaluation data) explain the current test point. The lower the value 

of this metric, the better the model. For the ith test point, 

 
 

4.4 Results 
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Figure 3 shows the predicted concentrations of E1, E2 and E3 over the entire region of 

interest as well as 2D section views of this output and the uncertainty of the predictions that 

constitute it; these were produced using multi-output GPs using the Neural Network kernel. 

Tables 2, 3 and 4 show the results of the cross validation testing on the geological resource data 

set with the Neural Network (NN), Matern 3/2 (MM), Squared Exponential (SQEXP) and Matern 

3/2 Matern 3/2 Squared exponential (MS) kernels. Trends from the three tables are visualized 

through numerous graphs located in the appendix and summarized below. For a more complete 

set and large sized graphs, see [Vasudevan, Melkumyan, and Scheding, 2012]. 
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Figure 3: Figures 3(a), 3(b) and 3(c) respectively show the predicted E1 concentrations (over the 

entire region) superimposed with the input data, a 2D section-view of the output data and the 

uncertainty in the predicted concentrations for the 2D view. The corresponding figures for E2 and E3 

are 3(d), 3(e), 3(f ) and 3(g), 3(h), 3(i) respectively. Expectedly, the uncertainty is low around regions 

where input/given data exist and rapidly rises for predictions away from such areas typically, the 

fringe areas. The 2D section view (Figure 3(b)) shows two red regions corresponding two regions of 

high E1 concentration. The corresponding regions in Figures 3(e) and 3(h) show low E2 and E3 

concentrations respectively. 

 

1. Prediction error (SE) increases with increase in test block size. 

• See Figures 4(a), 4(d), 4(f ), 4(h) for E1, 5(a), 5(d), 5(f ), 5(h) for E2 and 6(a), 6(d), 

6(f),6(h) for E3. 

• This behavior is expected. It happens because the support training data required for 

regressing at a test point is situated farther away. Increasing the test block size also results in 

reduced stratification as one fold of the cross validation may have e.g. 10,000 test points 

whereas another may have only 1000 points. This results in increased standard deviation of 

prediction error. A ten fold stratified cross validation is generally considered to be the most 

representative of performance measure [Kohavi, 1995], however testing multiple larger block 

sizes provides a better understanding of the model’s behavior and robustness. 

 

2. NN kernel based MOGP/GP models trained faster than other kernels 
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• Further optimization of each of the MOGP/GP models could yield better results. The 

results shown are the result of a reasonable amount of optimization applied to each kernel 

and GP model. Typically, multiple attempts were performed and the best results obtained 

were pursued/used. One iteration consisted of a stochastic optimization step (simulated 

annealing) and/or a gradient based optimization step (Quasi Newton optimization with BFGS 

Hessian update) with 10,000 training data chosen uniformly from the data. This work uses a 

“blocklearning” approximation [Vasudevan, Ramos, Nettleton, and Durrant-Whyte, 2010b] 

which approximates the total marginal likelihood as a sum of a sequence of marginal 

likelihoods computed over blocks of points comprising the training data. The size of the block 

is defined by the computational resources available. The stochastic optimization step was the 

most time consuming part; each attempt was started with completely random parameters. The 

code was unoptimized MATLAB code running typically on an 8-core processor based 

machine. Most times, not all the cores were used for the same process; multiple processes 

also shared the same system. Note that the experiments in this paper do not use analytical 

gradients for the optimization of the hyperparameters; this was a design choice made in the 

interest of stability and comparability of the optimization results across kernels. The use of 

analytical gradients can significantly reduce the total training time. Training time may also 

be reduced significantly by various other ways including other approximations, intelligently 

setting initial parameters, scaling the data etc.  

 
Rather than the individual training times, the relative amount of training (under similar 

conditions, with different kernel) required to produce a reasonable set of parameters is of 

more interest. Experience suggests that the NN kernel based MOGP/GP models converged 

faster and better as compared to other kernels. 

 

3. MOGP models based on the NN kernel outperform other kernels tested. 

• See Figures 4(a), 4(b), 4(c) for E1, 5(a), 5(b), 5(c) for E2 and 6(a), 6(b), 6(c) for E3. 

• The NN kernel is the best performing kernel of the four tested, across all block sizes 

tested. 

The MOGP based on the NN kernel produces lower SE (better estimate) and reduced 

NLP (better model) estimates than other kernels tested. 
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• For small block sizes, both the NN and MM kernel are competitive; in case of E3, the 

MM even marginally outperforms the NN kernel for the two smallest block sizes tested. 

Note however that considering all test sizes and all three elements, the observation is that 

the MM kernel produces lower VAR for a higher SE, meaning that it is more confident of 

its SE values which are worse/higher than those of the NN kernel. This makes its NLP higher 

and the model poorer than an MOGP based on the NN kernel. Note also that as the test block 

size increases, the advantage in performance of the MOGP based on the NN kernel over that 

based on the MM kernel becomes more distinctive. Not only are the SE values smaller for 

the NN kernel, the NLP values remain in the same range whereas those of the MM kernel 

rise significantly. This proves that the MOGP-NN is better performing and more robust than 

the MOGP-MM. The latter property suggests that the MOGP-NN will be able to cope better 

with incomplete data sets. 

• Both the MS and SQEXP kernels are not competitive with respect to the NN or MM 

kernelsconsidering both the SE and NLP metrics. These kernels are discussed individually 

in the following paragraphs. 

 

4. MOGP models perform significantly better than three separate GPs (using the MOGP 

parameters) or three independently optimized GPs as information fusion improves estimation. 

• See Figures 4(d) and 4(e) for E1, 5(d) and 5(e) for E2 and 6(d) and 6(e) for E3. 

• For the NN kernel, the MOGP metrics are always lower than the corresponding derived 

GP (GP) or independent GP (GPI) metrics lower SE (better estimate) with lower NLP (better  

model). This clearly demonstrates the benefits of information fusion across 

heterogeneous information sources so as to improve individual predictions using the MOGP 

model. 

• From Tables 2, 3 and 4, the average reduction in error (i.e. improvement in 

performance) of MOGP models over GP/GPI models for the smallest, intermediate and 

largest test block sizes are 

– E1 

∗ 22 x 11 x 2 95.6% over GP, 96.2% over GPI 

∗ 84 x 45 x 9 96.1% over GP, 96.0% over GPI 

∗ 696 x 353 x 70 44.6% over GP, 38.1% over GPI 

 

– E2 

∗ 22 x 11 x 2 89.6% over GP, 92.3% over GPI 

∗ 84 x 45 x 9 91.6% over GP, 92.4% over GPI 

∗ 696 x 353 x 70 42.1% over GP, 37.5% over GPI 

 

– E3 

∗ 22 x 11 x 2 82.4% over GP, 83.5% over GPI 

∗ 84 x 45 x 9 85.9% over GP, 85.3% over GPI 
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∗ 696 x 353 x 70 30.9% over GP, 22.5% over GPI  

These numbers demonstrate significant improvements in performance, even in very large test 

block sizes, when using the MOGP-NN model for correlated data. 

 

5. The MS kernel was uncompetitive 

• See Figures 4(h) and 4(i) for E1, 5(h) and 5(i) for E2 and 6(h) and 6(i) for E3. 

• The MS kernel is not competitive with respect to the NN and MM kernels as discussed 

earlier.However, the MOGP using this kernel combination proves to be better than a derived 

GP and an independently optimized GP with respect to the SE metric. From the NLP 

perspective, the MOGP-MS model is more competitive than the other GP models for small 

block sizes. For larger block sizes, using an independently optimized GP proves to be a more 

trust worthy modeling option as the increase in error is met with a corresponding increase 

in uncertainty (hence low NLP) for the independent GP models. The exception to this 

behavior is seen in the results for E3, the MOGP model is poor in this case. This is attributed 

to do with inferior parameters relevant to the element E3 obtained from the optimization 

process. 

• The MS kernel performs better than the SQEXP with respect to the NLP metric and 

hence can be trusted more (prediction error compensated by prediction uncertainty), but in 

two of the three elements (E1 and E3), its SE was inferior to that of the SQEXP. 

 

6. The SQEXP kernel was uncompetitive and unreliable 

• See Tables 2, 3 and 4; see Figures 4(a), 4(b) 4(c), 4(f ), 4(g), 4(h) and 4(i) for E1, 5(a), 

5(b),5(c), 5(f ), 5(g), 5(h) and 5(i) for E2 and 6(a), 6(b), 6(c), 6(f ), 6(g), 6(h) and 6(i) for 

E3. 

• The MOGP-SQEXP model performs poorly in comparison with the equivalent models 

using the NN/MM kernels, with respect to both SE and NLP. 

• For elements E1 and E3, the MOGP-SQEXP has a better SE than the corresponding 

model based on the MS kernel; it has an SE better than the corresponding 

derived/independent GP models but an inferior (overconfident or low uncertainty) VAR and 

a fluctuating NLP trend. For element E2, the MOGP-SQEXP is worse off than both the 

equivalent model based on the MS kernel as well as its corresponding GP models. 

• Considering the results for E2, the NLP is directly proportional to the SE and inversely 

to the prediction variance. At the smallest block size, the MOGP-SQEXP produces 

relatively high SE (with respect to e.g. MOGP-NN) but very low prediction variance. This 

basically suggests that the model is confident of its poor estimates a bad outcome. This 

results in a high NLP and poor model. As the block size increases, the prediction variance 

increases more relative to the prediction error resulting in the decreasing NLP trend. For 

elements E1 and E3, the largest block size results in a stronger increase in prediction error 

than the variance in the prediction resulting in an increase in NLP. Overall, the MOGP-

SQEXP model is poor. 
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• The SQEXP kernel is a limiting case of the MM kernel; both are stationary kernels. 

Considering the behavior of the GPI model using the SQEXP kernel and its competitive 

results with respect to those of the GPI-MM kernel, it is possible that the poor performance 

of the MOGP-SQEXP (as compared to the MOGP-MM) is due to poor optimization output 

(a bad local minima). 

 

7. In general, the stationary kernels tested seemed to have an inadequate increase in prediction 

uncertainty with increasing test block size and worsening predictions. This leads a higher NLP 

metric and a poor model that is overly confident of its worsening predictions. This behavior can 

be attributed to the correlation profile of the stationary kernels tested they all share the “correlation 

decreases with increasing distance of support data from point of interest” trend. This results in 

stationary kernels not being able to cope with large test block sizes as the support data is farther 

away (i.e. less correlated and not of much use). In contrast, the nonstationary NN kernel has a 

sigmoidal profile that can handle this issue across a range of test block sizes. 

 

8. The SE metric taken alone can be misleading. The experiments have reinforced the need 

for a multimetric analysis. The SE metric only provides information on the prediction error but 

it does not describe the prediction uncertainty which is very important in understanding if a model 

is reliable or otherwise. The VAR and NLP metrics provided key insights on the difference in 

performance between different models and kernels. A model that is very confident of its poor 

predictions is unreliable (as was the case for the SQEXP kernel). Worsening predictions (due to 

increasing test block size) is itself not a bad outcome, provided it is met with an equivalent 

increase in prediction uncertainty. 

 

9. Further discussion of the results in the context of broader practical issues like determining 

if a MOGP model is indeed good or identifying the kind of GP model suited for a particular task, 

are available in the technical report version of this paper [Vasudevan, Melkumyan, and Scheding, 

2012]. 

 

5. Conclusion 

This paper empirically studied the problem of geological resource modeling using a machine 

learning approach to convolved multi-output Gaussian processes (MOGPs). The concentrations 

of three elements were modeled and predicted over a region of interest using multi-output 

Gaussian processes (MOGPs; joint modeling of multiple outputs) as well as individual GPs for 

each of these quantities separately. The paper demonstrates that MOGPs perform significantly 

better than individual GPs at the modeling problem as they effectively integrate heterogeneous 

sources of information (concentrations of individual elements) to improve the predictions of each 

of them. The benefits of information integration using the MOGP as against independent GPs for 

the task of geological resource modeling have been quantified by a multi-metric, multi-kernel and 

multi-test-size cross validation study that performed both an exact and an independent comparison 
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between MOGPs and GPs. Multi-output Gaussian process models based on the Neural Network 

kernel was shown to be a competitive and robust modeling option across a range of test block 

sizes. 
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Appendix: Graphs of results obtained in Table 2, 3 and 4 

 
Figure 4: Element E1 - key trends. Test block sizes (m) - A (22 x 11 x 2), B (44 x 22 x 4), C (84 x 45 x 

9), D (174 x 89 x 18), E (348 x 177 x 35) and F (696 x 353 x 70). 
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Figure 5: Element E2 - key trends. Test block sizes (m) - A (22 x 11 x 2), B (44 x 22 x 4), C (84 x 45 x 

9), D (174 x 89 x 18), E (348 x 177 x 35) and F (696 x 353 x 70). 
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Figure 6: Element E3 - key trends. Test block sizes (m) - A (22 x 11 x 2), B (44 x 22 x 4), C (84 x 

45 x 9), D (174 x 89 x 18), E (348 x 177 x 35) and F (696 x 353 x 70). 
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